Enhancing Performance by Optimizing SQL

Ammar Sajdi

Oracle consultant

Palestine Engineering Co

Amman - Jordan

Optimizing response time of database system is an important issue for application developers, database administrators and users alike. Tuning is sometimes required to boost the performance into an acceptable level. There are different factors affecting the performance of the database. Operating system tuning, Oracle block buffers tuning, Oracle Shared pool are just examples of areas that can affect the overall response of you application. In this paper, we will concentrate on database performance can be enhanced by optimizing SQL statement.

Performance Monitoring Utilities

Oracle provides utilities to enable you understand how Oracle engine handles the execution of your SQL statements. Examples of such utilities include SQL_TRACE, TKPROF and EXPLAIN PLAN. In this section, an overview of these utilities is given:

SQL TRACE and TKPROF

SQL_TRACE

This utility will allow you to examine performance information on individual SQL statements with the SQL trace facility.

Performance Information

Parse, Execute, and Fetch Counts

CPU and Elapsed Times

Physical and Logical Reads

Number of Rows Processed

Misses on the Library Cache

Utilizing this utility involves two steps:

a)	Invoking SQL TRACE: The output from the SQL trace facility is stored in a trace file

b)	Invoking TKPROF program: The TKPROF program will read the output of the SQL trace file and present it in a readable format.

SQL TRACE can be enabled for your session by

SQL> ALTER SESSION SET SQL_TRACE=TRUE;

All SQL statement you issue after this command will be traced, analyzed and stored in one external trace file. Later on you can disable tracing by exiting from your session or by writing the following statement

.

SQL> ALTER SESSION SET SQL_TRACE=FALSE;

Important Note: SQL trace file is written only after setting SQL_TRACE to false or ending your session.

SQL TRACE can also be enabled for the entire instance (All session when ORACLE is started). This involves setting the following initialization parameter is your active INIT.ORA file

Parameter						Value

TIMED_STATISTCS					TRUE

USER_DUMP_DEST				Name of directory where you 								wish you trace files to reside

MAX_DUMP_FILE_SIZE				Max size of trace files in 								operating system blocks

SQL_TRACE						TRUE

When you use this method, ORACLE will gather statistics for all users’ sessions in separate trace files.

TKPROF is an operating system program and ,therefore, it is invoked from the operating system prompt and not from within ORACLE

The following Syntax shows how one can use Tkprof (Again remember that tkprof translates the trace file produced by the SQL trace file into a readable format)

$tkprof infile outfile EXPLAIN user/password

The infile is the file produced by TRACE and outfile is the file that will be generated by tkprof itself

AN EXAMPLE

SQL>ALTER SESSION SET SQL_TRACE=true;

SQL>SELECT * FROM EMP , DEPT WHERE EMP.DEPTNO= EMP.DEPTNO;

SQL>ALTER SESSION SET SQL_TRACE=FALSE;

$tkprof ora_2233.trc tkoutput.txt explain = sajdi/palco

(Note if you are using ORACLE7 under windows you will find tkprof in the \BIN directory. It is better that you create an icon for it and utilize it)

Typical Output:

“**

count = number of times OCI procedure was executed

cpu = cpu time in seconds executing

elapsed = elapsed time in seconds executing

disk = number of physical reads of buffers from disk (Physical Reads)

query = number of buffers gotten for consistent read (Logical Reads)

current = number of buffers gotten in current mode (usually for update)

rows = number of rows processed by the fetch or execute call

select * from

emp, dept where emp.deptno=dept.deptno

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- 	----------

Parse 1 0.00 0.00 0 0 0 	0

Execute 1 0.00 0.00 0 0 0 	0

Fetch 1 0.00 0.00 2 45 3 	14

-------- ------- -------- --------- -------- -------- ------	----------

total 3 0.00 0.00 2 45 3 	14

Parsing user id: 8 (AMMAR_SAJDI)

Rows Execution Plan

------- ---

 0 SELECT STATEMENT OPTIMIZER HINT: CHOOSE

 14 NESTED LOOPS

 14 TABLE ACCESS OPTIMIZER HINT: ANALYZED (FULL) OF ‘EMP’

 14 TABLE ACCESS (BY ROWID) OF ‘DEPT’

 14 INDEX (UNIQUE SCAN) OF ‘DEPT_PRIMARY_KEY’ (UNIQUE)

Note that SQL_TRACE and TKPROF utilities executes your statement as well as showing the execution plan.

Recommendation:

1-If the number of logical I/O is much greater than the number of rows returned, consider making an index available to the statement.

2-If the number of fetches performed is equal to the number of rows retrieved, consider using the array interface.

3-If the statement is parsed as often as it is executed, library cache could improve performance. Consult with your database administrator

4- If the number of physical I/Os is close to the number of logical I/Os, a larger database buffer cache could improve performance.

EXPLAIN PLAN

1-	There is a SQL script called UTLXPLAN.SQL. This can be usually found in /ORACLE_HOME/RDBMS/ADMIN directory. You can start this file from SQL*PLUS using your Username and Password.

2-	The script will create a table called PLAN_TABLE. Once This table is created, you can utilize it by using the EXPLAIN PLAN command. The following example illustrates how you can find out about the execution plan for

	SELECT * FROM EMP WHERE EMPNO=2343.

SQL> EXPLAIN PLAN SET STATEMENT_ID=‘A2’ FOR SELECT * FROM EMP WHERE EMPNO=2343;

Explained.

Note how the statement starts with the word EXPLAIN PLAN. Also note that ORACLE will not actually execute the statement, it will only show you how it plans to execute it

To extract the executing plan, it is recommended by most books and papers to use the following SQL script

SQL>SELECT DECODE(ID,0,’’,LPAD(‘ ‘,2*(LEVEL-1))||LEVEL||’.’|| POSITION)’ ‘||OPERATION||’ ‘||OPTIONS||’ ‘||OBJECT_NAME|| ‘ ‘||OBJECT_TYPE||’ ‘||DECODE(ID,0,’COST = ‘||POSITIONS) QUERY_PLAN FROM PLAN_TABLE CONNECT BY PRIOR ID=PARENT_ID AND STATEMENT_ID= UPPER(‘&&1’) START WITH ID=0 AND STATEMENT_ID= UPPER(‘&&1’)

A Typical Example:

SQL> EXPLAIN PLAN SET STATEMENT_ID =

	‘S1B’ FOR

	SELECT * FROM EMP,DEPT

	WHERE EMP.DEPTNO = DEPT.DEPTNO;

A Typical output is

QUERY_PLAN 	

--

1.1	NESTED LOOPS

2.1	TABLE ACCESS FULL DEPT

2.2	TABLE ACCESS BY ROWID EMP

3.1	INDEX RANGE SCAN EMP_DEPTNO NON-UNIQUE

The above Query_Plan is read from most idented statement (In our case 3.1). It tells you that ORACLE will do nested loops. The outer loop from the DEPT table and the inner loop from EMP table. It also tells you that the access method for the outer loop will be FULL access (Not indexed), and the inner loop will use the index EMP_DEPTNO to get its data. The information provided by this Plan is very critical in showing you how ORACLE is planning to execute your SQL statements.

ORACLE OPTIMIZERS

Prior to ORACLE7, Oracle kernel used what is called as RULE BASED optimizer to determine query strategy. This optimizer only depends on a set of rules that are pre assigned. This optimizer’s execution plan is not influenced by any statistical distribution of data

With the advent of ORACLE7, a COST BASED optimizer was introduced. It is worth mentioning ,however, that the rule based optimizer is still around. In fact, your application might very well be still using the old (rule) based optimizer. The following discussion is intended to shed some light on ORACLE’s rule based optimization technology:

.

The optimizer computes the ‘costs’ of alternative execution plans using previously gathered statistics , and it filters out potentially expensive plans. Then it chooses the execution plan with lowest cost. The cost-based optimizer uses statistics collected for each table by the ANALYZE command. For, example the table extent information provides accurate estimates for the cost of full-table scan. To make future executions faster, the execution plans are stored in the shared pool memory,. Any time the ANALYZE command is used , new information are collected and the old execution plans are flushed from the shared pool.

USING THE COST BASED OPTIMIZER

In order to use the cost based optimizer, the parameter OPTIMIZER_MODE in your init.ora file should be set to the default value of CHOOSE. This parameter tells ORACLE to use the cost based optimizer if statistics are available to compute the cost of queries. If no statistics are available, the rule based optimizer is used. If this value is not set to CHOOSE, you can use the cost based optimizer during a session

SQL>ALTER SESSION SET OPTIMIZER_GOAL=CHOOSE;

If you intend to force Oracle to use the rule based optimizer then you should set the OPTIMZER_MODE parameter to RULE.

Back to the cost based optimizer, it is stressed again that it is the ANALYZE command that collects the statistics necessary for the cost based optimizer to work properly.

The way to use the ANALYZE command is briefly described below. It seems that one has to analyze tables individually. If you want the ANALYZE command to be executed for all of the tables that exist in your account (or schema, to be more accurate), you can invoke the Oracle supplied packaged procedure called DBMS_UTILITY.ANALYZE_SCHEMA. Examine the following example:

 BEGIN							DBMS_UTILITY.ANALYZE_SCHEMA(‘SCOTT’,’COMPUTE’);	

 END;

You can ,of course, use the DBMS_JOB packaged procedure to automatically run the above procedure at user defined intervals.

SQL> ANALYZE TABLE emp COMPUTE STATISTICS, or

SQL> ANALYZE TABLE emp ESTIMATE STATISTICS.

The COMPUTE option examines all rows of the object (may be slow, but very accurate).

The ESTIMATE option examines a statistically significant portion (about 1064 rows) of an object (quick, but less accurate).

TO INDEX OR NOT TO INDEX, this is the question

Consider a table called TRANS which has three fields

ACC_NO, AMOUNT,TR_TYPE, LOCATION

LOCATION is non-uniquely indexed

ACC_NO is non-uniquely indexed

TRANS table contains 19211 records

6532 records match the selection criteria, LOCATION =1 or 34%

384 records match the selection criteria, LOCATION =7 or 2%

1 record match the selection criteria, LOCATION=99

The following illustrations will help us to understand when index usage can improve response time. The conclusion will be drawn by using SQL_TRACE and TKPROF in addition to Query execution plan.

SQL> SELECT SUM(AMOUNT) FROM TRANS WHERE LOCATION=1;

SUM(AMOUNT)

 1451808

 real: 4450

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 0.00 0.00 183 13066 0 1

-------- ------- -------- --------- -------- -------- ------- ----------

total 3 0.00 0.00 183 13066 0 1

Parsing user id: 8 (AMMAR_SAJDI)

EXECUTION PLAN

6532 TABLE ACCESS (BY ROWID) OF 'TRANS'

 6533 INDEX (RANGE SCAN) OF 'IND4' (NON-UNIQUE)

Examine the case where the selection criteria is met for 2% of the records

SQL>SELECT SUM(AMOUNT) FROM TRANS WHERE LOCATION=7;

SUM(AMOUNT)

 44774.4

 real: 830

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 0.00 0.00 185 825 0 1

-------- ------- -------- --------- -------- -------- ------- ----------

total 3 0.00 0.00 185 825 0 1

Parsing user id: 8 (AMMAR_SAJDI)

EXECUTION PLAN

384 TABLE ACCESS (BY ROWID) OF 'TRANS'

 385 INDEX (RANGE SCAN) OF 'IND4' (NON-UNIQUE)

Even though both statements used the same index, but response time dropped from 4450 to 830. The number of logical and physical blocks also dropped. This is because the number of rows processed also dropped from 6532 to 384 due to the fact that LOCATION = 7 is met for 2% of the records compared with 34% for the first statement.

Now, we will investigate if results obtain by suppressing the index on LOCATION.

 SQL>SELECT SUM(AMOUNT) FROM TRANS WHERE LOCATION+0=1

SUM(AMOUNT)

 1451808

 real: 880

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 0.00 0.00 16 194 3 1

-------- ------- -------- --------- -------- -------- ------- ----------

total 3 0.00 0.00 16 194 3 1

Parsing user id: 8 (AMMAR_SAJDI)

EXECUTION PLAN

19211 TABLE ACCESS (FULL) OF 'TRANS'

Clearly the response time is now better without the index. Notice the dramatic drop in physical and logical reads

SQL>SELECT SUM(AMOUNT) FROM TRANS WHERE LOCATION+0=7

SUM(AMOUNT)

 44774.4

 real: 770

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 0.00 0.00 16 194 3 1

-------- ------- -------- --------- -------- -------- ------- ----------

total 3 0.00 0.00 16 194 3 1

Parsing user id: 8 (AMMAR_SAJDI)

EXECUTION PLAN

19211 TABLE ACCESS (FULL) OF 'TRANS'

The response time is almost the same because a full table scan is done in both cases.

Now examine an highly selective indexed query

SQL> SELECT SUM(AMOUNT) FROM TRANS WHERE LOCATION=99;

SUM(AMOUNT)

 112

 real: 110

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 0.00 0.00 0 3 0 1

-------- ------- -------- --------- -------- -------- ------- ----------

total 3 0.00 0.00 0 3 0 1

Parsing user id: 8 (AMMAR_SAJDI)

EXECUTION PLAN

1 TABLE ACCESS (BY ROWID) OF 'TRANS'

 2 INDEX (RANGE SCAN) OF 'IND4' (NON-UNIQUE)

This query demonstrated the best case for index utilization.

Observation: The above example clearly indicates that if the number of records that fulfills a WHERE criteria is large, the response time of you system will be better by not using the index. In fact, if the records retrieved constitute more than 5% of the total rows of the table, better performance can be obtained by suppressing the use of indexes.

Let us next examine how the cost-based optimizer will plan to execute the above statement:

As discussed above, we have to analyze the tables in order to make the statistical data distribution available to the optimizer

SQL> ANALYZE TABLE TRANS COMPUTE STATISTICS;

SQL> SELECT SUM(AMOUNT) FROM TRANS WHERE LOCATION =1;

SUM(AMOUNT)

 1451808

 real: 4830

OPERATION OPTIONS			COST

------------------------------ ------------------------------		

TABLE ACCESS BY ROWID			170

INDEX RANGE SCAN

The plan table suggests that the optimizer decided to use the index search. It estimated the cost of such operation to be 170.

Therefore, to guarantee optimum performance, we still need to suppress the use of the index. This can be done by using HINTS as shown in the following example:

SQL>SELECT /*+FULL(TRANS)*/ SUM(AMOUNT) TRANS TRANS WHERE LOCATION=1;

SUM(AMOUNT)

 1451808

 real: 760

The response time is clearly better than the indexed scan. The Execution plan is

OPERATION OPTIONS			COST

------------------------------ ------------------------------		---------

SELECT STATEMENT 509250

SORT AGGREGATE

TABLE ACCESS FULL

Notice that the cost of execution of the full table scan was estimated to be 509250. The optimizer thought that using the full table scan has higher cost. This explains why the optimizer decided to execute the first plan.

INDEX MERGE

Consider the TRANS table discussed above, and consider a statement that has two selection criteria. For example, consider the following SQL statement

SQL> SELECT * FROM TRANS WHERE LOCATION=1 AND ACC_NO =103

384 rows selected.

 real: 10710

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 26 0.00 0.00 238 1587 0 384

-------- ------- -------- --------- -------- -------- ------- ----------

total 28 0.00 0.00 238 1587 0 384

Parsing user id: 8 (AMMAR_SAJDI)

Rows Execution Plan

------- ---

 384 TABLE ACCESS (BY ROWID) OF 'TRANS'

 6898 AND-EQUAL

 6514 INDEX (RANGE SCAN) OF 'IND4' (NON-UNIQUE)

 385 INDEX (RANGE SCAN) OF 'IND3' (NON-UNIQUE)

The above execution plan suggests that ORACLE retrieves 6514 rows using IND4 index (Based on the LOCATION field) and it retrieves 385 rows using IND3 (Based on acc_no) index. Then ORACLE merges the two lists and qualifies the rows that meet the selection criteria (LOCATION=1 and ACC_NO=103). The observation here is that if the selection criteria involves two non-unique indexes, the optimizer will use both of them and merge the result.

There is a way to optimize this statement and boost the response time. Note that since the selection criteria is an AND condition, then it is enough to consider only one of the lists and filter out the rows that meet the second condition from this list. Therefore, if we can pick the index that retrieves the least number of records (385) and suppress the index IND4, only the 385 will be examined.

SQL> SELECT * FROM TRANS WHERE LOCATION+0=1 AND ACC_NO=103;

384 rows selected.

 real: 7970

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 26 0.00 0.00 133 771 0 384

-------- ------- -------- --------- -------- -------- ------- ----------

total 28 0.00 0.00 133 771 0 384

Parsing user id: 8 (AMMAR_SAJDI)

Rows Execution Plan

------- ---

 384 TABLE ACCESS (BY ROWID) OF 'TRANS'

 385 INDEX (RANGE SCAN) OF 'IND3' (NON-UNIQUE)

The response time dropped to 7970 from 10710. The number of records processed was 385 rather than 6898 and clearly the number of physical and logical blocks retrieved by the second statement was far less than the numbers of the first statement.

These two statements where executed using the cost-based optimizer. The observation was consistent with the above behavior.

Conclusion:- ORACLE will find each criteria using its index, then it will merge the results. If you can pick the most restrictive index and suppress the other indexes, you will get better response time.

NOTE: If one of the indexes is unique, ORACLE will use it and ignore the other indexes totally..

JOIN OPTIMIZATION

Whenever two or more tables are joined ORACLE will have to decide which is the driver table and which is the driven table. The driver table is the table that will be accessed first (The outer loop). For each record in the driver table (the outer loop), ORACLE will try to find the matching records in the driven table (The inner loop).

Big differences in performance can be noticed when the driver and driven tables are interchanged. Therefore, it is important that we discuss how to optimize table joins.

CASE 1: When one of the two tables is indexed on the join field, the ORACLE optimizer will always choose the non-indexed table to be the driver table. The choice makes a lot of sense since values in the driven table(inner loop) will be matched (looked up) once for each record in the driver table. If optimizer changes this order (Something the optimizer will never do) , i.e., the driven table has no index, then a full driven table scan will be done for each record in the driver table and the response time will drastically deteriorate.

CASE2 When Both tables are indexed, the ORACLE optimizer will choose the driver table to be the table that will return the fewest number of records. Here, it makes a difference whether we are using the COST-BASED or the RULE-BASED optimizer. The rule-based optimizer has no information what so ever on the sizes of the tables involved in the join and it assumes that both has the same size. The cost based optimizer , on the other hand, can utilize the statistics collected by the ANALYZE command to know the sizes of the tables under consideration.

Let us consider some examples

TRANS table contains 19211 rows. TRANS.ACC_NO is non-uniquely indexed.

MASTER table contains 51 rows MASTER.ACC_NO is uniquely indexed.

NO STATISTICS are collected for the tables under consideration

SQL>SELECT BAL,AMOUNT FROM MASTER, TRANS

 WHERE MASTER.ACC_NO = TRANS.ACC_NO;

QUERY_PLAN

--

1.1 NESTED LOOPS

 2.1 TABLE ACCESS FULL TRANS

 2.2 TABLE ACCESS BY ROWID MASTER

 3.1 INDEX UNIQUE SCAN ACCNO UNIQUE

The Driver table is TRANS

 real: 8900

Repeat the example and change the order of the tables in the FROM CLAUSE

SQL>SELECT BAL,AMOUNT FROM TRANS,MASTER

 WHERE TRANS.ACC_NO = MASTER.ACC_NO;

QUERY_PLAN

1.1 NESTED LOOPS

 2.1 TABLE ACCESS FULL MASTER

 2.2 TABLE ACCESS BY ROWID TRANS

 3.1 INDEX RANGE SCAN IND3 NON-UNIQUE

real: 7300

The driver table is now the MASTER table.

The response time was improved because the driver table contains the fewest number of records. Notice that the driver table was determined by the order of the tables in the FROM clause. The query will be driven by rightmost table. What we learn from this example is that one should always list the table with the fewest number of records to right. This conclusion will only hold true if there are no other selection criteria in the where clause. The decision of the optimizer will be drastically affected by other selection criteria.

conclustion: make it a habbit to list the table with the fewest number of records as the rightmost table.

Let us use the COST based optimizer. The ANALYZE command will be used to ensure that statistics are available for the optimizer.

SQL> ANALYZE TABLE TRANS COMPUTE STATISTICS;

SQL> ANALYZE TABLE MASTER COMPUTE STATISTICS;

SQL>SELECT BAL,AMOUNT FROM MASTER, TRANS

WHERE MASTER.ACC_NO = TRANS.ACC_NO

QUERY_PLAN

--

1.1 NESTED LOOPS

 2.1 TABLE ACCESS FULL MASTER

 2.2 TABLE ACCESS BY ROWID TRANS

 3.1 INDEX RANGE SCAN IND3 NON-UNIQUE

In this case, the query was not driven by rightmost table, rather it was driven by the MASTER table because the master table contains the fewest number of records.

ORDER BY

The ORDER BY statement is not needed when the ordered by field is indexed. To make use of the fact that the index is already ordered and save your query the expensive sorting time, make sure that your query is utilizing the index

SQL>SELECT ACC_NO, AMOUNT, LOCATION FROM TRANS

WHERE ACC_NO BETWEEN 100 AND 110 -- ensure index utilization

ORDER BY ACC_NO;

QUERY_PLAN

--

1.1 TABLE ACCESS BY ROWID TRANS

 2.1 INDEX RANGE SCAN IND3 NON-UNIQUE

Note that even though the SQL statement uses the ORDER BY clause, the Query Plan did not indicate that any kind of ordering took place. This fact clearly indicates that since the field ACC_NO is indexed and the ordering required is by ACC_NO, there is no need to re-order a field which is already stored in an ordered format in the Index segment.

 Let us see what happens when the ordering is changed to a non-indexed field like AMOUNT.

SQL>SELECT ACC_NO, AMOUNT, LOCATION FROM TRANS

WHERE ACC_NO BETWEEN 100 AND 110

ORDER BY AMOUNT;

QUERY_PLAN

--

1.1 SORT ORDER BY

 2.1 TABLE ACCESS BY ROWID TRANS

 3.1 INDEX RANGE SCAN IND3 NON-UNIQUE

Clearly, the Query plan indicates that SORT is performed if the ORDER BY Field is different from the indexed field.

Conclusion: No need to order indexed fields

SUB-QUERIES

Join operations are expensive in terms of system response time. If there is a way to avoid joining table and replace is with a sub-query, then use sub-query. The following will illustrate

 SQL>SELECT SUM(AMOUNT) FROM TRANS A , MASTER B

 WHERE A.ACC_NO = B.ACC_NO

 AND LOCATION =1; 		-- Note no index exists on location

real: 9660

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 2 0.00 0.00 0 0 0 0

Execute 2 0.00 0.00 0 0 0 0

Fetch 2 0.00 0.00 445 82782 6 2

-------- ------- -------- --------- -------- -------- ------- ----------

total 6 0.00 0.00 445 82782 6 2

6532 NESTED LOOPS

 51 TABLE ACCESS (FULL) OF 'MASTER'

 19211 TABLE ACCESS (BY ROWID) OF 'TRANS'

 19262 INDEX (RANGE SCAN) OF 'IND3' (NON-UNIQUE)

The Join is not really needed because the information required exists in TRANS table only. The statement will be rewritten using a Subquery.

SQL> SELECT SUM(AMOUNT) FROM TRANS A

 WHERE LOCATION =1 AND EXISTS -- note no index exists on location

 (SELECT 'X' FROM MASTER B WHERE A.ACC_NO = B.ACC_NO)

 real: 2750

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- ------- -- ------ ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 0.00 0.00 43 13281 3 1

-------- ------- -------- --------- -------- -------- ------- ----------

total 3 0.00 0.00 43 13281 3 1

6532 FILTER

19211 TABLE ACCESS (FULL) OF 'TRANS'

 6530 INDEX (UNIQUE SCAN) OF 'ACCNO' (UNIQUE)

The response time was reduced drastically. This comes as a result of the dramatic reduction of physical and logical reads. The execution plan further clarifies why this reduction came about. For each record that meets the selection criteria in the TRANS table, an indexed access is performed on the index segment of the MASTER table. MASTER table itself is never touched because the subquery does not require any particular field from that table.

Conclusion: Avoid using joins when possible

PL/SQL

The usage of PL/SQL can lead to dramatic improvement in response time. An example will illustrate:-

The MASTER table contains ACC_NO field with a unique index and BAL field. There are 51 records in this table.

The TRANS table contains ACC_NO non-uniquely indexed, AMOUNT, TR_TYPE field and it contains 19211 records. The TRANS table is the details table for MASTER

It is required that the BAL field in MASTER is updated by the sum of AMOUNT of all matching records in the TRANS table.

Standard NON PL/SQL solution

UPDATE MASTER M

 SET BAL=(SELECT M.BAL +SUM(TR_TYPE*AMOUNT) FROM TRANS

 WHERE ACC_NO = M.ACC_NO)

real: 9390

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 9129 9182 262 51

Fetch 0 0.00 0.00 0 0 0 0

-------- ------- -------- --------- -------- -------- ------- ----------

total 2 0.00 0.00 9129 9182 262 51

Parsing user id: 8 (AMMAR_SAJDI)

Notice the high activity of Physical (DISK) Access

PL/SQL SOLUTION

DECLARE

	X1 NUMBER;

	X2 NUMBER;

	 CURSOR C1 IS SELECT ACC_NO, SUM(TR_TYPE*AMOUNT) FROM 		TRANS GROUP BY ACC_NO;

 BEGIN

 	 OPEN C1;

 LOOP

 	FETCH C1 INTO X1,X2;

 	EXIT WHEN C1%NOTFOUND;

	UPDATE MASTER SET

 	 BAL=BAL+X2 WHERE ACC_NO=X1;

END LOOP;

END;

real: 2470

call count cpu elapsed disk query current rows

-------- ------- -------- --------- -------- -------- ------- ----------

Parse 1 0.00 0.00 0 0 0 0

Execute 1 0.00 0.00 179 229 57 1

Fetch 0 0.00 0.00 0 0 0 0

-------- ------- -------- --------- -------- -------- ------- ----------

total 2 0.00 0.00 179 229 57 1

Parsing user id: 8 (AMMAR_SAJDI)

Notice how much the Physical and logical reads were reduced. There is a reason as to why the standard SQL solution takes much longer. For every ACC_NO in table MASTER, a summation operation was executed for the matching records in the TRANS table (i.e. for the same ACC_NO). Since there are 51 records in the table MASTER, 51 summations will be carried out on the table TRANS which contains 19211 records. In the PL/SQL approach, however, the different ACC_NO in the TRANS table are summed and grouped only once, and then the corresponding record in MASTER are updated.

Conclusion: Examine other possibilities of achieving the same results by using PL/SQL

AND PREDICATE

The order of the predicates in a WHERE clause can sometimes be important and critical to the performance of a query. The following example (the idea extracted from Marcel Kratochvil work) will illustrate:

l

SQL> SELECT * FROM TRANS

	 WHERE (1=0)

 	AND (-1=(SELECT COUNT(A.ACC_NO) FROM MASTER A, MASTER 	B,MASTER C))

real: 6420

Now the WHERE clause is reordered

 SQL> SELECT * FROM TRANS

 	 WHERE (-1=(SELECT COUNT(A.ACC_NO) FROM MASTER A, MASTER 	B,MASTER C)) AND (1=0)

 real: 110

The reason for the big difference in performance is because when the query is run, the row is rejected as soon as one of the predicates fails. A False AND anything will always be False. As one predicate fails, there is no need to evaluate the other. When the optimizer cannot determine which of the two clauses to evaluate first, it will evaluate the AND clause from right to left. Returning to the last SQL statement, the clause AND (1=0) will always be False and no further processing is done on the other time consuming predicate

Conculsion: List the most restrictive condition to rightmost of your AND clause.

Concluding remarks:

Optimizing SQL needs some thoughts and insight. Understanding ORACLE optimizers will help in achieving optimization goals. Reaching high levels of optimization requires continous testing and thorough understand of the nature of data. The possibilitis are numerous, but I hope that this paper succeeded in convincing you that application tuning and optimization is a critical factor of the overall tuning process

About the Author:

Ammar Sajdi is an independent ORACLE consultant. He is currently running his business in Amman, Jordan. He provides professional ORACLE7 training and consulting in many area including tuning, arabization, database administration as well as development using DEVELOPER/2000. He was privileged to obtain a BS degree from the Electrical and Computer Engineering department at the University of Illinois at Urbana-Champaign, USA, and then a MS degree in Electrical Engineering from Jordan University, Jordan. He was heading the ORACLE department at Computer and Engineering Bureau (CEB) until mid 1995. Ammar is one of the few Certified DataBase Administrators in the Middle East.

Palestine Engineering Co.

POBOX 17187

Fax 962-6-826602

E-mail: palco@go.com.jo

Ammar Sajdi , 1996 		� PAGE �1�

