EXPLORING ORACLE SERVER BUILT-IN PACKAGES

(DBMS.XXXX)

Ammar Sajdi

Consultant

Palestine Engineering Co., Amman - JORDAN

Oracle server ships with a set of built-in packaged procedures that provide a wealth of functionality for DBA’s and developers alike. The objective of this paper is to reveal the advantages of some of these outstanding hidden jewels. To facilitate demonstrating the capabilities of these packages, the discussion will be complemented by examples.

DBMS_OUTPUT built-in

You can use this standard packaged procedure to write messages to the buffer area and later retrieve those messages.

One of the remarkable usage of this packaged procedure is it capability to display the buffer to your screen if you are using SQLDBA or SQLPLUS.

DBMS_OUTPUT.PUT_LINE(message varchar2);

This procedure is used to Write a message to the session’s buffer. You can invoke DBMS_OUTPUT.PUT_LINE(message). either within a PL/SQL block or directly from SQL prompt.

To instruct SQL*Plus or SQL*DBA to flush the buffer contents to the screen (and clearing the buffer), you must use ‘SET SERVEROUTPUT ON’

EXAMPLE:

SQL> SET SERVEROUTPUT ON

--default buffer size is 2000 bytes. To override this limitation, you can use the following option

“Set serveroutput on size 4000”;

SQL>Execute DBMS_OUTPUT.PUT_LINE(SYSDATE)

15-OCT-96

PL/SQL procedure successfully completed.

SQL>SET SERVEROUTPUT OFF -- disables DBMS_OUTPUT

The DBMS_OUTPUT.GET_LINE on the other hand reads one line from the buffer area. The syntax of this procedure is as follows:

DBMS_OUTPUT.GET_LINE(Message out Varchar2 , Status out integer)

Once this procedure is executed it will return the buffer line into the (Message) variable and will return the Status into the (Status) variable. If a line of information is found in the buffer, the procedure will return a zero in the Status variable, otherwise status is <> 0

NOTE: The DBMS_OUTPUT write and read operations must be enabled by executing DBMS_OUTPUT.ENABLE procedure. Failure to do that will prevent this package from functioning as expected.

Using SET SERVEROUTPUT ON enables the Package automatically and causes the output of the buffer to be re-directed to the screen. The buffer is flushed after the output is read and displayed on the screen. The Following Example will illustrate

SQL> Execute DBMS_OUTPUT.ENABLE

SQL>Execute DBMS_OUTPUT.PUT_LINE(‘HELLO’) – Message in now in the buffer

DECLARE	

	 MESS		 VARCHAR2(100);

	 STAT 		 integer;

BEGIN	

DBMS_OUTPUT.GET_LINE(MESS,STAT); -- message is moved to MESS

INSERT INTO DEPT VALUES (50,MESS,STAT);

COMMIT;						

END;

SQL> SELECT * FROM DEPT WHERE DEPTNO=50;

DEPTNO	DNAME 	LOCATION

-----------	-----------	----------------

50		HELLO		 0

The GET_LINE procedure reads the buffer and initializes the MESS and STAT variables. Then these values are inserted into the table DEPT. A Query on the Dept. table verifies the message.

DBMS_ALERT Built-In

This package provides support for inter-session notification of database events. Inter-session communication is a key strength of such feature. Before embarking on illustrating ALERTS, it is important to emphasize that ALERTS are transaction dependent. This means that the ALERT is not broadcast until the signaling database event is committed. Assume that session1, session2 , … ,session3 are all connected to the same database. Also assume that session1 is required to notify other sessions about a certain event (i.e. Sending them an ALERT). For the sake of illustration figure (1) shows a virtual network among sessions, in much the same way PC’s are connected in typical Ethernet LAN. To establish inter-session communication, session1 must broadcast a notification signal to the virtual network. Such a signal would be triggered by the signaling event using the procedure DBMS_ALERT.SIGNAL. Sessions that are interested in being notified about this alert must register their interest in it using DBMS_ALERT.REGISTER. The alert message is read using DBMS_ALERT.WAITONE or DBMS_ALERT.WAITANY. The latter listens on any of the alerts that are registered, while the former procedure listen on one particular Alert.

�

�

Figure(1) virtual network among sessions

Example

Assume that session1 and session2 need to inform interested sessions that they are logged on to the database system.

Session1 should execute the following:

SQL>Execute DBMS_ALERT.SIGNAL(‘ALERT1’,’I am user1’)

SQL> COMMIT;

or equivalently a call can be made to the same procedure from PL/SQL block.. For example, from within ORACLE FORMS4.5 you can write the following trigger

	

When-New-Form-Instance

		DBMS_ALERT.SIGNAL(‘ALERT1’,’I am User ‘|| user);

		COMMIT;

Session2 should similarly execute the following

SQL>Execute DBMS_ALERT.SIGNAL(‘ALERT1’,’I am user2’)

SQL>COMMIT;

The important thing to notice is that an ALERT is not actually sent until a COMMIT is issued by the signaling session.

The interested session say session3 must execute the following code:-

SQL>Declare

		Status	number;

		Message varchar2(50);

Begin

DBMS_ALERT.REGISTER (‘ALERT1’); -- Listen on ALERT1

DBMS_ALERT.REGISTER (‘ALERT2’); -- Listen on ALERT2

Loop

DBMS_ALERT.WAITANY(message, status); -- wait for any registered Alerts

		If status = 0 Then

			DBMS_OUTPUT.PUT_LINE (message);

		Else

			DBMS_OUTPUT.PUT_LINE(‘Error’);

		End if;

	End loop;

End;

Important Notes:

All registered sessions will be notified about the ALERT they have registered for only if the registration for the ALERT took place before the COMMIT was issued by the signaling session.

The packaged procedure DBMS_ALERT.WAITANY () puts the application in a waiting state; the application is blocked in the database and cannot do any other work until the Alert is received.

If the interested sessions are not currently waiting (but registered), they are notified the next time they do a wait call. Remember that this holds true only because they are registered.

If multiple sessions try to concurrently perform signals on the same ALERT (say ALERT1), the first session blocks concurrent sessions until the first session commits.

Example

Assume that you are using ORACLE FORMS application to show current data residing in one of the tables of the database. You also need the application to automatically refresh the screen whenever the database is changed by other user.

A database trigger is needed to signal an ALERT whenever the database table under consideration is changed. Consider the following code:

	Create or Replace trigger Send_Alert

	After update on emp

	Begin

		DBMS_ALERT.SIGNAL(‘EMP_ALERT’, ’Any message’);

	End;

The Forms application needs the following trigger

When-New-Forms-Instance

Declare

	Status	integer;

	My_message	varchar2(100);

Begin

-- Register you interest in ALERT Emp_Alert

DBMS_ALERT.REGISTER(‘Emp_Alert’);

Execute_query;

Synchronize;

-- Loop for ever and listen on ALERT emp_alert

Loop

	DBMS_ALERT.WAITONE(‘Emp_Alert’,my_message,status);

	If status = 0 Then

-- Refresh Screen

		 Execute_Query;

		 Synchronize;

	Else

		 Message (‘Error’);

	End if;

End Loop;

End;

DBMS_PIPE Built-in

The previous description of ALERTs has clearly shown that ALERTs are transactional (Need commit), and act like a Radio broadcasting concept; that is if you are tuned in (Registered) you will receive the broadcast, otherwise the broadcast message is lost. PIPES on the other hands, are:

Non transaction dependent

Stored in Pipe buffer in FIFO manner where incoming information on the same pipe will not overcome others, rather, incoming information will queue in FIFO fashion until they are read.

Can be received by polling techniques; that is you can check the pipe whenever you want and you will not be blocked until the pipe receives information.

Once a pipe message is received by a session, it is removed from the pipe and cannot be received by other sessions;

A reader on an empty pipe can optionally wait for the next information to arrive.

Let us examine the available packaged procedures and functions

DBMS_PIPE.PACK_MESSAGE(item); where item is the message that needs to be sent to the pipe.

As figure (2) shows, this procedure sends the message that will populate the pipe to the session’s message buffer stack, and is not yet sent to the pipe. You can pack several message on the buffer stack.. Each message should be stacked with a separate call to the PACK_MESSAGE procedure.

			ORACLE INSTANCE

�

�

Session1 Buffer

�	

		Figure (2) PACK_MESSAGE caused message ITEM to be placed in the session’s stack buffer

DBMS_PIPE.SEND_MESSAGE(pipe_name), where Pipe_name is the name of the pipe that will be created in the shared pool area (Part of the SGA) so that it can carry the information that is going to be sent. This function will transfer the session’s message buffer stack to the pipe called pipe_name. The session’s message buffer stack is also cleared as a result of the execution of this function. This function will return a zero (0) if it executes without errors. Figure (3) shows a diagram of the discussed functionality.

�

�

�Session1 Buffer

Figure (3) SEND_MESSAGE created an instance of the Pipe in the SGA, transmitted the message to the Pipe and cleared the sessions Buffer

After the pipe is being successfully populated, the receiving end can extract the information using the following packaged function

DBMS_PIPE.RECEIVE_MESSAGE(pipe_name,timeout). This function will read the information off the pipe and transfer it to the receiving session’s message stack buffer. The default value for timeout is 1000 days (Waiting state) A timeout of 0 allows for a read attempt without a wait state; a situation known as a non-blocking read This function will return a zero (0) if it executes without errors. Please refer to figure (4) for illustration

��

	 Session1 Buffer 						 Session2 Buffer

�

Figure(4): RECEIVE_MESSAGE issued by Session2 transfers the message form the Pipe to the local session’s stack buffer.

After the information is transferred to the session’s stack buffer, it can be read using

DBMS_PIPE.UNPACK_MESSAGE(variable_name) procedure. Where variable_name is a PL/SQL declared variable that will hold the intended information. Once unpacked, the message is removed from the buffer stack. Each call to this procedure will read one packed piece of information. If for example, the transmitting session wants to send two message on the pipe, it needs to call the PACK_MESSAGE procedure twice, once for each message and then it needs to call the SEND_MESSAGE function once. Now the receiving session needs to call RECEIVE_MESSAGE function once, and call the UNPACK_MESSAGE twice in order to read both messages distinctly.

 Example:

Assume that you have a long running PL/SQL on one terminal and you want debugging messages to appear on another terminal connected to the same database. This will allow operators and administrators to monitor the execution of this long running PL/SQL program in an on-line manner (Note that this cannot be accomplished by DBMS_OUTPUT procedure because this procedure writes its output to a buffer within the session and will only display the output after the PL/SQL block terminates).

The following PL/SQL simulates a long running program

SQL> Set Serveroutput on

Declare

	Status	integer;

Begin

	For I in 1 .. 20 Loop

		DBMS_PIPE.PACK_MESSAGE(I);

		For j in 1 .. 300000 loop

	 		- - Any dummy code like status := 3;

		End loop;

		status := DBMS_PIPE.SEND_MESSAGE(‘test_pipe’);

		if status <> 0 then

			dbms_output.put_line (‘ERROR’);

		end if;

End loop;;

End;

And on the receiving end, the following code will read the sent messages synchronously.

SQL> Set Serveroutput on

Declare

	s integer;

	out1 number;

Begin

	for I in 1 ..20 loop

		s := DBMS_PIPE.RECEIVE_MESSAGE (‘test_pipe’);

		if s = 0 then

			DBMS_PIPE.UNPACK_MESSAGE(out1);

			DBMS_OUTPUT.PUT_LINE(out1);

		end if;

	End loop;

end;

If you send messages through pipes and the client process died, Information will be left in the pipe and will take up space in the shared area. You can identify such pipes using the following SQL statement

SQL> Select KGLNAOBJ from X$KGLOB where KGLOBTYP=18 and KGLOBSTA=1;

Then use DBMS_PIPE.Purge() to remove it.

NOTES: You noticed previously that a pipe is created automatically when the function DBMS_PIPE.SEND_MESSAGE is called. You can, however, explicitly create a pipe using DBMS_PIPE.CREATE(pipe_name). The interesting thing about such a pipe is that it is private. Private pipes are only accessible by user with the same user_id as that of the user that created the pipe.

UTL_FILE

With release 7.3, Oracle Server adds file input/output capabilities to PL/SQL. This feature is accomplished using the supplied package UTL_FILE.

This utility is very helpful in Batch mode operation, where you can easily open a log file to

trace the program during its execution. It can also be used to as a debugging tool.

INIT.ORA

The file I/O accessible directories must be specified in the instance parameter initialization file (INIT.ORA). The parameter UTL_FILE_DIR specified the directory name where you are allowed to perform your I/O operations:

Example:

UTL_FILE_DIR =/u/oracle7/my_files

UTL_FILE_DIR = * /* All directories are accessible */

Add UTL_FILE_DIR for every Directory you want to access

.

FOPEN		Open / Create a File for input or output

FCLOSE	Close a file

GET_LINE	Read a line from an open file

PUT_LINE	Write a line to a file and terminate the line "CR"

PUT		Write a line to a file without termination

PUTF		A formatted PUT Line

NEW_LINE	Insert a new line character to the file

FFLUSH	Write all buffered output information physically

The above functions and procedures will be explained by means of examples

Example 1

It is required that you execute two update statements on EMP and Dept table. A log file should be generated that registers the time when the operation begins , the name of the user before the update begins, after the update of the first statement and when the second update is finished.

Solution:

Declare								file_ptr		UTL_FILE.FILE_TYPE ; -- file handle	dir		varchar2(20) := '/u/oracle7/my_dir';

Begin

/* open a file called update.log for read operation. The file will be opened in the directory /u/oracle7/my_dir which should be part of INIT.ORA */

	file_ptr := UTL_FILE.FOPEN(dir,'update.log','w');		UTL_FILE.PUT_LINE (file_ptr, 'Starting '|| user||' '||sysdate);	Update emp set sal = sal +0 ;				 UTL_FILE.PUT_LINE(file_ptr,'Finished EMP '|| sysdate);	Update dept set deptno=deptno+0;				 UTL_FILE.put_line(file_ptr,' Procedure Done '||sysdate);

-- Close the file

	 UTL_FILE.FCLOSE(file_ptr);

END;

	

Before executing the above statement, you may want to the sysdate variable to display date and time. This can be accomplished by executing the following

SQL> Alter Session Set NLS_DATE_FORMAT='dd/mm/yyyy -- hh24:mi';

The following is a typical output for the update.log file:

pg update.log

Starting SCOTT 11/08/1997 -- 16:38

Finished EMP 11/08/1997 -- 16:38

 Procedure Done 11/08/1997 -- 16:38

TO OPEN A FILE

FUNCTION FOPEN (location 	IN VARCHAR2,

			filename	IN VARCHAR2,

			open_mode	IN VARCHAR2)

RETURN UTL_FILE.FILE_TYPE;

location is the directory where the file will be opened.

filename is the name of the file including extension

open_mode is 'r' If the file is to be used for read operation

		'w' If the file is to be used for write operation

		'a' If the file is to be used for append.

Note: You can open the file 'w+r' for read and write.

TO WRITE TO A FILE

PROCEDURE PUT_LINE (file_handle IN FILE_TYPE,

				text	 IN VARCHAR2);

file_handle Is a pointer to an already opened file in write mode.

text 	Is a String that contains the data you want to write to a file

Remarks: The TEXT will be terminated with line terminator char.

	 The maximum size of the TEXT is 1023.

Return Value is like a pointer that points to the opened file. This pointer will be used in subsequent procedure instead of the filename.

Also for Writing you can use the PUTF Procedure

PROCEDURE PUTF (file_handle	IN FILE_TYPE,

			 text		IN VARCHAR2);

file_handle Is a pointer to an already opened file in write mode.

text 	Is a String that contains the data you want to write to a file.

REMARKS: The PUTF is a formatted PUT and works much like a limited printf(); because it accepts limited number of formats.

\n	Line termination character

%s	substitue this sequence with the string variable in the 		argument list .

Example 2

Create a cursor that fetches all employees a send the output to a file called emp.lst

Declare	

 file_ptr		UTL_FILE.FILE_TYPE;

 dir VARCHAR2(20):='/u/oracle7/files';

Begin

 file_ptr := UTL_FILE.FOPEN(dir,'emp.lst','w');

 for REC in (SELECT * FROM EMP) Loop -- For Cursor Loop

	 UTL_FILE.PUTF(file_ptr, 'NAME is %s SAL is %s \n',				 REC.ename, REC.sal); -- C language format

 End Loop;

 UTL_FILE.FCLOSE (file_ptr);

END;

A typical output is

$pg emp.lst

NAME is SMITH SAL is 800

NAME is ALLEN SAL is 1600

NAME is WARD SAL is 1250

NAME is JONES SAL is 2975

NAME is MARTIN SAL is 1250

NAME is BLAKE SAL is 2850

NAME is CLARK SAL is 2450

NAME is SCOTT SAL is 3000

NAME is KING SAL is 5000

NAME is TURNER SAL is 1500

NAME is ADAMS SAL is 1100

NAME is JAMES SAL is 950

NAME is FORD SAL is 3000

NAME is MILLER SAL is 1300

IMPORTANT REMARK

Normally ,the data being written using the previously explained command is buffered. To force the buffered data to be physically written to a file the FFLUSH Procedure must be used.

PROCEDURE FFLUSH (file_handle 	IN FILE_TYPE);

file_handle	is a pointer to an opened file in write mode.

TO READ FROM A FILE:

Example 3

It is required that you read a file that contains an employee number. You are then required to update the salary of this employee by adding $100 to his salary. The filename that you should read is emp_sal.

Declare

 file_ptr 	utl_file.file_type;

 x 		varchar2(10);

 begin

 file_ptr := utl_file.fopen('/u/oracle7/files','emp_sal','r');

 utl_file.get_line(file_ptr, x); -- The empno is read and moved to X

 update emp set sal=sal+100 where empno=to_number(x);

 utl_file.fclose(file_ptr);

 end;

You Can verify that this example really works

PROCEDURE GET_LINE(file_handle IN FILE_TYPE,

			 text	 IN VARCHAR2);

file_handle: is a pointer to an already opened file in read mode

REMARKS: The GET_LINE will read the file pointed to by the file_handle pointer and returns the string into the TEXT variable. The string is read up to but NOT including the line terminator, or up to the end of file.

If the line does not fit in the output buffer, a VALUE_ERROR exception is raised. If no text was read due to "end of file", the NO_DATA_FOUND exception is raised. Also note that the maximum size of an input record is 1022 bytes.

TO CLOSE AN OPENED FILE

PROCEDURE FCLOSE (file_handle IN OUT FILE_TYPE);

This procedure closes an open file identified by a file handle. You could receive a WRITE_ERROR exception when closing a file, as there might be buffered data yet to be written when FCLOSE executes

DBMS_JOBS Built-In

This built-in procedure provides for automatic scheduling and execution of user written stored procedures at user specified interval using Job Queue mechanism. Deferred execution of repetitive administrative operations such as collection of storage utilization can be automatic. Job Queues provides application developers with a portable and convenient mechanism for scheduling database related tasks

The following init.ora parameters need to be set

job_queue_processes=2 # number of background processes to handle scheduled job

Job_queue_interval=60 # the processes will wake up every 60 seconds.

job_queue_keep_connections=TRUE

The main procedure in this package in DBMS_JOB.SUBMIT. This package takes the following arguments

	JOB		Out 	Binary Integer

	What	 	In	Varchar2

	Next_date	In	Date default sysdate

	Interval	In	Varchar2 default ‘null’

	no_parse	In 	Boolean default false

An explanation of the above argument is

	

Job: The number of the current job. This is automatically assigned by the SUBMIT procedure and is a unique number that will identify you background job.

What: Is the PL/SQL procedure to be executed.

Next_date: Is the date at which the job will next be automatically executed.

Interval: Is a date function. When the job is successfully executed, the interval date function is placed in the Next_date and therefore, becomes the target date for the next execution of the job. If this argument is null or evaluates to null, the job is executed only once, and then removed from the queue.

Examples of valid Interval are

	‘SYSDATE+(1/24)’ -- Executes every hour

	‘SYSDATE+3’ -- Executes every three days

	‘NEXT_DAY(sysdate,’’MONDAY’’) -- Executes every Monday

Example:

Assume that you have a stored procedure called proc_one which takes an argument arg1, and you want this procedure to be executed every hour.

�Solution:

Declare

	job_no 	number;

Begin

	DBMS_JOB.SUBMIT(job_no,’proc_one(‘’arg1’’); ’,sysdate,’sysdate+1/24’);		-- Do not forget the semicolon

	DBMS_OUTPUT.PUT_LINE(job_no); -- display job number

end;

You can delete a job from the queue by calling the procedure DBMS_JOB.REMOVE(job_no). This can be called interactively from the SQL prompt for example:

SQL>Execute DBMS_JOB.REMOVE(1) -- Will remove job number 1.

Related data dictionary View is USER_JOBS

SQL> select job, log_user,last_sec,this_sec,next_sec ,what from user_jobs;

 JOB LOG_USER THIS_SEC	 	NEXT_SEC 	WHAT

--------- ------------------------------ -------------	 --------------------- 	---------

 1 SCOTT 13:50:40		13:58:47 	proc1;

 2 SCOTT 14:04:35 		14:09:35 	sal_raise;

Conclusion:

Even though this paper shed some light on some of the most important pre-built packaged procedures but still there are many more. The reader is urged to consult the Oracle7 server application developer’s guide for more information about these procedures. Among the interesting procedure, for example, that was not explained is the DBMS_UTILITY.ANALYZE.SCHEMA which is intended to Analyze all tables in your schema.

About the Author:

Ammar Sajdi is an independent ORACLE consultant. He is currently running his business in Amman, Jordan. He provides professional ORACLE7 training and consulting in many area including tuning, Arabization, database administration as well as development using DEVELOPER/2000. He was privileged to obtain a BS degree from the Electrical and Computer Engineering department at the University of Illinois at Urbana-Champaign, USA, and then a MS degree in Electrical Engineering from Jordan University, Jordan. Ammar is one of the few Certified DataBase Administrators in the Middle East.

Palestine Engineering Co.

POBOX 17187

Fax 962-6-826602

E-mail: palco@go.com.jo

Ammar Sajdi 		� PAGE �11�

Session1

Session2

Session3

 ORACLE INSTANCE

Broadcast Channel

Shared Pool Area

		

ITEM

Shared Pool Area

		Pipe_name

 ITEM

Shared Pool Area

		Pipe_name

ITEM

Note the semicolon

